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CHAPTER 1:  INTRODUCTION 

Crash modification factors (CMF) are commonly defined as ratios of expected road crash frequencies 

caused by different treatment conditions. CMFs are key inputs to the Highway Safety Manual’s (HSM) 

(AASHTO, 2010) prediction methodology, and at present the best estimates of CMFs come from 

before/after studies that control for regression-to-mean (RTM) bias. When several estimates of a 

treatment’s CMF are available, perfect agreement is rare. For example, a study of the safety effect of 

pedestrian hybrid beacons (PHB) in Tucson, Arizona, produced an estimated CMF=0.31 (Fitzpatrick and 

Park, 2010), while a recent National Cooperative Highway Research Program (NCHRP) study, using data 

from several U.S. cities, produced an estimated CMF=0.244 (Zegeer et al., 2017). The range of the 

estimates also vary depending on methodological assumptions. This has led to interest as to whether, 

and how, a CMF estimated for one location can be applied, or transferred, to different locations with 

possibly different traffic and crash-generating conditions. Transferability of CMFs, which was highlighted 

at the recent Federal Highway Administration (FHWA) CMF Needs Assessment Workshop, is the focus of 

NCHRP project 17-63 (FHWA, 2015). 

Hauer et al. (2012) has brought some clarity to the transferability issue. It suggested extending the 

statistical models that currently support CMF estimation, which treat the CMF as a constant, to allow 

CMFs to vary across different locations, as functions of local influences. That study provided guidance on 

how to combine two or more CMF estimates and how to estimate the between-location variability in 

CMFs. Significant between-location variability means that the transfer of an estimate from one location 

to another will be questionable, and the authors recommend that future studies should record and 

report the “relevant circumstances” that are likely to affect CMFs. How these relevant circumstances are 

to be identified, however, was left open. Persaud, Lyon, and Srinivasan (2015) also addressed the 

transferability issue, noting that “…understanding the underlying causes of variability in CMF estimates 

is key to success in widespread application of CMF knowledge…” That study discussed using meta-

regression and cross-sectional analyses to develop CMfunctions, which express crash modification 

effects as functions of site or regional conditions. The authors noted, however, that “considerable 

challenges” remain. In fact, empirical development of CMfunctions has been a topic of research for at 

least a decade. Elvik (2013) described two early efforts, one looking at the effects of bypass roads and 

one at converting standard intersections to roundabouts. That study noted that the heterogeneity 

among published studies can make meta-analysis difficult, and that the lack of well-established road-

safety theory hindered identification of relevant circumstances. More recently, Park et al. (2015), 

looking at individual sites within a geographic region, found that the safety effects of bicycle lane 

installations varied with certain road and traffic conditions, while Chen and Persaud (2014) reported 

that, when attempting to identify CMfunctions for individual sites within a geographic area, hierarchical 

models appeared more promising than single-level specifications.  

To date, research has tended to focus on geographic transferability, that is, the possibility of applying a 

CMF estimated in one region to different regions, although the spatial scale has varied, from differences 

among individual road sites to differences among nations (e.g., Elvik, 2013).  A related issue concerns 
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the application of a CMF estimated during current conditions to possibly different conditions in the 

future. This possibility of temporal transferability is becoming more important as we recognize that the 

empirical results supporting the HSM are largely statistical summaries of recent driver and vehicle 

characteristics, and that these could change significantly if and when automated vehicles (AV) improve 

their capabilities and increase their market share. One possibility, of course, is that the AV environment 

will be similar enough to existing conditions that little adjustment will be needed. At least one 

preliminary exploration indicates, however, that this might not be the case (Granados et al., 2018). On 

the other hand, the AV environment could be so different that the research supporting the HSM, 

spanning decades and costing millions of dollars, will become obsolete, and rational road safety 

engineering will start over from scratch. At least in the shorter run, something intermediate is more 

likely, especially when roads are populated by mixtures of AVs and traditional vehicles. This leads to the 

question of how the existing safety research investment might be leveraged with limited experience 

with AVs to support reasonable decision-making. 

CMF transferability is essentially a special case of assessing the external validity of an empirical result, 

and roughly contemporary with the building concern about CMF transferability, researchers in other 

disciplines have given thought to identifying conditions that warrant external validity (Cartwright, 2011; 

Clarke et al., 2014). Especially promising is work by Pearl and Bareinboim (Pearl and Bareinboim, 2014; 

Barenboim and Pearl, 2013), which have described a set of formal methods for determining when a 

causal effect estimated in one situation might be applied, or “transported,” to a different situation. 

These methods show how to combine prior background causal knowledge with results from controlled 

experiments and observational studies to predict the causal effect of a treatment in a new situation. In 

Chapter 2, we introduce Pearl and Bareinboim’s transportability methods to the CMF transferability 

problem by considering two simple but plausible scenarios. These examples illustrate how to identify 

“relevant circumstances,” and lead to expressions for calibrating an existing CMF to reflect new 

conditions. In Chapter 3, we develop and test a causal model of how pedestrian hybrid beacons achieve 

their reported crash modification effects. In Chapter 4, we then apply the results from Chapter 2 to the 

model developed in Chapter 3, to assess the transportability of the PHB CMF to hypothetical situations 

where automated vehicles are present. A note on terminology: “transferability” and “transportability” 

are approximate but not perfect synonyms; because we focus here on applications of Pearl and 

Bareinboim’s transportability methods, we will tend to use that term in preference to “transferability.” 
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CHAPTER 2:  TRANSPORTABILITY OF CAUSAL EFFECTS 

2.1 GRAPHICAL MODELS 

Transportability analysis is essentially a continuation of the project begun by Judea Pearl over 30 years 

ago, which sought to develop and extend formal reasoning tools that support uncertain causal 

inference. To illustrate Pearl’s approach, let Y denote a random variable describing an outcome of 

interest, and X be a random variable which has a possible influence on Y. The observational association 

between X and Y is then characterized by the standard conditional probability P(Y=y|X=x). The causal 

effect of X on Y is the outcome observed after experimentally manipulating X, and this is denoted by 

P(Y=y|do(X=x)). These two probabilities might be the same but the old caution that “correlation does 

not imply causation” tells us not to expect this. A central problem then is to identify conditions where 

observational studies that estimate conditional probabilities are also sufficient to identify causal effects, 

and this generally requires leveraging observational results with background knowledge about causal 

structure.  A key tool for this is the representation of background knowledge as a graph, i.e. a set of 

nodes and links, where the nodes represent random variables and the links indicate how the variables 

depend on each other. Pearl and his associates have developed a set of inference rules, called the do-

calculus, by which a graphical model guides the reduction of a statement about causal effects, involving 

do(.) operations, to an equivalent expression involving conditional and unconditional probabilities, 

which could in principle be estimated from observational studies. 

 

Figure 2. 1 Graphical model for a simple three-variable system. 

To illustrate, let X, Y, and Z denote three random variables related according to the graphical model 

shown in Figure 2. 1. Here, Y is dependent on Z, while Z is dependent on X. For example, Y could denote 

an outcome of interest, such as crash frequency, while X denotes a safety-related treatment. In Figure 2. 

1 Z denotes a mediator, such as traffic speeds. The model in Figure 2.1 states that X directly affects Z and 

X indirectly affects Y through Z. All joint probability distributions consistent with Figure 2. 1 can be 

factored into P(X,Z,Y) = P(Y|Z)P(Z|X)P(X), and one of the cornerstones of Pearl’s methodology is a 

relationship between the connectivity properties of a graph and the conditional dependencies among 

the represented random variables. In Figure 2. 1, note that node Z blocks all paths from X to Y, and so Z 

is said to d-separate X and Y. Since d-separation in the graph is equivalent to conditional independence 

in a corresponding joint probability distribution (Pearl 2009), this property of the graph allows us to 

conclude that random variables X and Y are conditionally independent given Z, which we will express as 

X┴Y|Z. That is, the joint conditional distribution of X and Y factors to P(X,Y|Z) = P(X|Z)P(Y|Z). 
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2.1.1 Graphical Models and Causal Inference 

In the graphical model shown in Figure 2. 2, Y again denotes a target outcome, such as crash frequency, 

X again denotes a safety-related treatment, but now Z denotes a covariable, while M denotes an 

unobserved confounder. Figure 2. 2 can represent, for example, a confounded before/after study, 

where X=0 and X=1 denote respectively the absence and presence of a safety treatment, Z and Y denote 

before and after crash counts, and M is an unobserved common cause for Z and Y, such as a mean crash 

frequency which differs randomly across sites. A safety improvement program operates by observing a 

before crash count Z at a site and, based on this outcome, makes a decision about deploying X. An after-

crash count Y is then observed and the goal is to estimate the crash modification factor that would be 

observed in a randomized trial of the treatment. 

𝐶𝑀𝐹 =
𝐸[𝑌|𝑑𝑜(𝑋 = 1)]

𝐸[𝑌|𝑑𝑜(𝑋 = 0)]
                    (2. 1)  

Since 

𝐸[𝑌|𝑑𝑜(𝑋 = 𝑥)] =∑𝑦𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥))

𝑦

 

determining the causal probabilities P(Y=y|do(X=x)) is sufficient to determine the CMF. It turns out that 

this example is essentially the Task 2 example described in Pearl (2009), and the causal probabilities can 

be expressed as 

𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) 

=∑𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥), 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑑𝑜(𝑋 = 𝑥))

𝑧

 

=∑𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧)

𝑧

 

The causal effects P(Y=y|do(X=x)) having been reduced to expressions involving only conditional 

probabilities these can now, in principle, be estimated from observational data. 

 

Figure 2. 2 Graphical model representing a confounded before/after study. 
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2.1.2 Transportability of Causal Effects 

Now, suppose we are interested in a CMF for a particular site, such as a pedestrian crossing treatment. 

Again we’ll imagine a hypothetical controlled experiment, but now a sample of n events, such as 

pedestrian crossing attempts, are observed without the treatment and the number of crashes recorded. 

The intersection is then returned to exactly the same condition as before and the treatment is installed. 

Another sample of n events is observed and the number of crashes is again recorded. If X=0 denotes the 

non-treated condition and X=1 the treated condition, while Y equals 0 or 1 depending on whether or not 

an event results in a crash, then Equation (2.1) becomes 

𝐶𝑀𝐹 =
𝐸[𝑌|𝑑𝑜(𝑋 = 1)]

𝐸[𝑌|𝑑𝑜(𝑋 = 0)]
=
𝑛𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 1)]

𝑛𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 0)]
=
𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 1)]

𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 0)]
 (2. 2) 

Now, suppose a CMF has been reliably estimated for the treatment under existing vehicle and driver 

conditions and we wish to apply this to a new set of conditions, such as those prevailing when 

automated vehicles have a significant market share. To formalize such possibilities Pearl and Bareinboim 

introduced what they call a selection diagram, a graphical model with additional nodes and links 

indicating where two situations differ. Figure 2. 3 shows a selection diagram for the system represented 

in Figure 2. 1, where the selection node S indicates that the distribution of Z differs in the two situations. 

That is, if S=0 denotes our initial situation (e.g. without AVs) and S=1 denotes the new situation (e.g. 

with AVs) then P(Z|S=0) does not necessarily equal P(Z|S=1). If the goal is to estimate the causal effect 

do(X=1) in the new situation, P(Y|do(X=1), S=1), Pearl and Bareinboim’s results can be used to show that 

this is possible, and that the transport formula is 

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1) =∑𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 0, 𝑍 = 𝑧)𝑃(𝑍 = 𝑧|𝑑𝑜(𝑋 = 1), 𝑆 = 1)

𝑧

(2. 3) 

That is, the causal effect in the new situation (S=1) can be computed from the covariate-specific causal 

effects in the old situation P(Y=1|do(X=1), S=0,Z=z) together with the causal effect on the covariate in 

the new situation P(Z=z|do(X=1),S=1). 

 

Figure 2. 3 Selection diagram indicating that the distributions for Z can differ in different situations. 



 

6 

 

2.2 TWO EXAMPLE SCENARIOS 

2.2.1 Scenario 1 

Figure 2. 4 shows the selection diagram for our first transportability scenario. As before Y denotes the 

non-occurrence (Y=0) or occurrence (Y=1) of a crash whiles X=0 and X=1 denote, respectively, the 

absence and presence of a safety treatment. The outcome Y depends on two inputs, U which is affected 

by the treatment, and V which is not. S is a selection node with S=0 and S=1 denoting the original and 

new situations, respectively. The selection node S pointing into V indicates that the distribution of V can 

differ between the two situations. For example, at a road crossing, U could stand for variables 

characterizing pedestrian behavior while V stands for variables characterizing vehicle and driver 

behavior. Figure 2. 4 then states that the intervention operates by affecting pedestrian actions, but that 

vehicle/driver behavior differs in the two situations being considered. Research has determined the CMF 

for the treatment in the current situation and we want to transport this knowledge to the new situation. 

 

Figure 2. 4 Selection diagram for Scenario 1. 

To begin, suppose that the causal effect P(Y=1|do(X=1), S=0) has been estimated in the original situation 

and we seek to transport this to the new situation. That is, we want P(Y=1|do(X=1),S=1). Note that, in 

Figure 2. 4, node V blocks the path from S to Y, so that V d-separates Y from S, which implies that that Y

┴ S|V. Theorem 2 in Pearl and Bareinboim (2014) then implies that the v-specific causal effects in the 

original situation are directly transportable between the two situations. That is 

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 0, 𝑉 = 𝑣) = 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1, 𝑉 = 𝑣) 

Pearl and Bareinboim’s (2014) Corollary 1 (Pearl and Bareinboim, 2014) then implies that a transport 

formula is 
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𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1) =∑𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 0, 𝑉 = 𝑣)𝑃(𝑉 = 𝑣|𝑆 = 1)

𝑣

 (2. 4) 

That is, in this case the v-specific causal effect estimated in the original situation, plus knowledge of how 

V varies in the new situation, are sufficient to transport causal knowledge from the original situation to 

the new situation.  

The CMF for our intervention in the new situation is 

𝐶𝑀𝐹∗ =
𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1]

𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 0), 𝑆 = 1]
 (2. 5) 

so applying Equation (2.4) to the numerator and denominator of Equation (2.5) can lead to an estimator 

of CMF*, the CMF for the new situation. This would, however, require determining not just average 

causal probabilities P(Y=1|do(X), S=0) in the original situation but also how these vary as V varies. For 

example, at a pedestrian crossing, where V denotes vehicle speed, we would need a function that 

relates the causal effect of the treatment on pedestrian crash risk to vehicle speed. For rare events such 

as road crashes even obtaining a sample size sufficient to estimate the average effect P(Y=1|do(X), S=0) 

can be difficult, and samples sufficient to estimate v-specific effects will often be impractical. This is a 

common situation when rare events are of interest, and a common solution is a retrospective study. For 

estimating CMFs, a variant of a retrospective analysis was suggested in Davis (2014), which can be 

applied here when it is possible to estimate the distribution of V in the population of crashes. To see 

this, note again that, in Figure 2. 4, V d-separates S from Y, and that X is a root node (i.e. has no arrows 

pointing into it), so Pearl’s do-calculus implies 

𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑉 = 𝑣, 𝑆 = 1) = 𝑃(𝑌 = 1|𝑋 = 1, 𝑉 = 𝑣) = 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑉 = 𝑣, 𝑆 = 0). 

Applying Bayes Theorem gives us 

𝑃(𝑌 = 1|𝑋 = 1, 𝑉 = 𝑣, 𝑆 = 0) =
𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 1, 𝑆 = 0)𝑃(𝑌 = 1|𝑋 = 1, 𝑆 = 0)

𝑃(𝑉 = 𝑣|𝑋 = 1, 𝑆 = 0)
 (2. 6) 

Substituting Equation (2.6) into (2.4) and (2.5), and simplifying, leads to 

𝐶𝑀𝐹∗ = (𝐶𝑀𝐹)(
∑ (

𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 1, 𝑆 = 0)
𝑃(𝑉 = 𝑣|𝑆 = 0)

)𝑃(𝑉 = 𝑣|𝑆 = 1)𝑣

∑ (
𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 0, 𝑆 = 0)

𝑃(𝑉 = 𝑣|𝑆 = 0)
)𝑣 𝑃(𝑉 = 𝑣|𝑆 = 1)

) (2. 7) 

Equation (2.7) states that, for systems represented by the graph in Figure 2. 4, the transported CMF 

equals the original CMF multiplied by a calibration factor that depends on the distribution of V-values in 

the populations of crashes, and on the distributions of V in the original and new situations. If 

retrospective data on crashes are available this offers a potentially practical method for transporting a 

CMF. 
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2.2.1.1 Computational Example for Scenario 1 

To illustrate these results, suppose that the treatment of interest affects pedestrian behavior at a road 

crossing and that we wish to transport a current estimate, made when automated vehicles were absent, 

to a situation where they are present. That is, X=0 and X=1 respectively denote to absence or presence 

of the treatment, while S=0 and S=1 denote situations without and with AVs. For simplicity, we will 

assume that U and V are also binary-valued, with  

𝑈 = {
0, 𝑐𝑎𝑟𝑒𝑓𝑢𝑙 𝑝𝑒𝑑𝑠𝑡𝑟𝑖𝑎𝑛
1, 𝑐𝑎𝑟𝑒𝑙𝑒𝑠𝑠 𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛

         𝑉 = {
0, 𝑐𝑎𝑟𝑒𝑓𝑢𝑙 𝑑𝑟𝑖𝑣𝑒𝑟
1, 𝑐𝑎𝑟𝑒𝑙𝑒𝑠𝑠 𝑑𝑟𝑖𝑣𝑒𝑟

 

and that a crash occurs if either the pedestrian is careless, or if the pedestrian is careful but the driver is 

careless. Formally 

𝑌 = {
0,                     𝑈 = 0 ∧ 𝑉 = 0
1, 𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)

 

Finally, let the probability distributions for U and V be given as in Table 2. 1. 

Table 2. 1 Scenario 1 probability distributions for U and V as functions of X and S 

 
U= 

 

 
V= 

0 1 0 1 

X= 
0 .5 .5 

S= 
0 .5 .5 

1 .8 .2 1 .8 .2 

The effect of the treatment is to increase the fraction of careful pedestrians, while the presence of AVs 

increases the fraction of careful drivers. 

Computations for this example are detailed in the Appendix. Using the definition of Y and the 

probabilities in Table 2. 1, direct computation of the CMFs gives us:  

𝐶𝑀𝐹 =
𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑆 = 0, 𝑋 = 1)

𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑆 = 0, 𝑋 = 0)
=
. 2 + (. 8)(.5)

. 5 + (. 5)(.5)
= 0.8 

  

𝐶𝑀𝐹∗ =
. 2 + (. 8)(.2)

. 5 + (. 5)(.2)
= 0.6 

So in this example the treatment, which increases the fraction of careful pedestrians, has a greater 

reduction effect when AVs are present. To apply Equation (2.7) we need the distributions of V in crashes 

occurring with and without the intervention. These are 

𝑃(𝑉 = 0|𝑌 = 1, 𝑋 = 1, 𝑆 = 0) = 0.167 

𝑃(𝑉 = 1|𝑌 = 1, 𝑋 = 1, 𝑆 = 0) = 0.833 

𝑃(𝑉 = 0|𝑌 = 1, 𝑋 = 0, 𝑆 = 0) = 0.333 
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𝑃(𝑉 = 1|𝑌 = 1, 𝑋 = 0, 𝑆 = 0) = 0.667 

Substituting these into Equation (2.7), along with V distributions taken from Table 2. 1 leads to 

𝐶𝑀𝐹∗ = (. 8) (
. 6

. 8
) = 0.6 

So here we have an example of a CMF estimated in one condition being re-calibrated to reflect new 

conditions. Accomplishing this required (1) formulating a graphical model for the crash-generating 

process, (2) identifying those variables which are expected to change between the original and the new 

situations, and (3) identifying a set of variables that d-separate the situational changes from the crash 

outcome. This then allowed us to determine what features of the original situation could be transported 

to the new one (the distribution of careless vs careful drivers involved in crashes) and what features of 

the new situation needed to be predicted (how the overall distribution of careless vs careful drivers 

would change between the situations). 

2.2.2 Scenario 2 

 

Figure 2. 5 Selection diagram for Scenario 2. 

Figure 2. 5 shows the selection diagram for our second scenario, similar to the first except that now V is 

affected both by the treatment and by the changes between the two situations. An example might be a 

pedestrian crossing improvement that affects driver behavior which is also expected to change when 

AVs are present. As before, our goal is to estimate the CMF in the new situation 

𝐶𝑀𝐹∗ =
𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1]

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0), 𝑆 = 1]
 

Starting with the numerator we can use Pearl’s do-calculus to derive the transport formula 

𝑃[𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1] 
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=∑𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1, 𝑉 = 𝑣)𝑃(𝑉 = 𝑣|𝑑𝑜(𝑋 = 1), 𝑆 = 1)

𝑣

 

=∑𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1, 𝑉 = 𝑣)𝑃(𝑉 = 𝑣|𝑋 = 1, 𝑆 = 1)    𝑑𝑜 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠 𝑅𝑢𝑙𝑒  2

𝑣

 

=∑𝑃(𝑌 = 1|𝑆 = 1, 𝑉 = 𝑣)𝑃(𝑌 = 𝑣|𝑋 = 1, 𝑆 = 1)   𝑑𝑜 − 𝑐𝑎𝑙𝑐𝑢𝑙𝑢𝑠  𝑅𝑢𝑙𝑒  3

𝑣

 

=∑𝑃(𝑌 = 1|𝑆 = 0, 𝑉 = 𝑣)𝑃(𝑉 = 𝑣|𝑋 = 1, 𝑆 = 1)     𝑌 ⊥ 𝑆|𝑉

𝑣

 

So, as with Scenario 1, v-specific effects estimated in the original scenario, and the effect of the 

intervention on V in the new scenario, are needed to estimate the new causal effect. 

It is also possible to derive an analog to Equation (2.7) 

𝐶𝑀𝐹∗ = (𝐶𝑀𝐹)(
∑ (

𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 1, 𝑆 = 0)
𝑃(𝑉 = 𝑣|𝑋 = 1, 𝑆 = 0)

)𝑃(𝑉 = 𝑣|𝑆 = 1, 𝑋 = 1)𝑣

∑ (
𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 0, 𝑆 = 0)

𝑃(𝑉 = 𝑣|𝑋 = 0, 𝑆 = 0)
)𝑣 (𝑃(𝑉 = 𝑣|𝑆 = 1, 𝑋 = 0)

) (2. 8) 

We can see that, in this case, the effects of the intervention on V in the new scenario are needed to 

compute the calibration factor.  

To illustrate, again suppose that U and V are binary-valued and that 𝑃(𝑈 = 0) = 𝑃(𝑈 = 1) =  0.5. The 

distribution of V now depends on both X and S, and let it be given in Table 2. 2. 

For example, 𝑃(𝑉 = 0|𝑆 = 0, 𝑋 = 1) = 0.8 while 𝑃(𝑉 = 0|𝑆 = 1, 𝑋 = 1) = 0.9. 

Table 2. 2 Probability distributions for V as function of both S and X 

V 

0 1 

S 

0 X 
0 .5 .5 

1 .8 .2 

1 X 
0 .8 .2 

1 .9 .1 

It is straightforward to compute directly 

𝐶𝑀𝐹 =
𝑃(𝑌 = 1|𝑆 = 0, 𝑋 = 1)

𝑃(𝑌 = 1|𝑆 = 0, 𝑋 = 0)
=
𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑆 = 0, 𝑋 = 1)

𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑆 = 0, 𝑋 = 0)
=
. 5 + (. 5)(.2)

. 5 + (. 5)(.5)
= 0.8 

𝐶𝑀𝐹∗ =
. 5 + (. 5)(.1)

. 5 + (. 5)(.2)
= 0.917 

And, applying Equation (2.8) 
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𝐶𝑀𝐹∗ = (. 8) (
. 917

. 8
) = 0.917 

So again we have a case where an existing CMF can be re-calibrated to reflect new conditions as long as 

sufficient retrospective data are available. 

2.3 CHAPTER SUMMARY 

In summary, what this chapter shows is that if one has at hand a probabilistic causal model that explains 

how a crash modification affects crashes, and if one can identify which model variables are affected by 

situational differences and how these differences are manifested, then transportability (aka 

transferability)  of a crash modification effect can be assessed and, when feasible, a transport formula 

can be derived. A major obstacle to applying these insights is that, while statistical estimates of 

aggregate crash modification effects are plentiful, rigorous explanations of how these effects operate 

are almost completely non-existent. In the next chapter we will explore how the needed explanations 

might be posed and tested. 
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CHAPTER 3:  DEVELOPING AN EXPLANATORY MODEL FOR A CMF 

As noted in Chapter 2, if one has probabilistic causal model that explains how a CMF works and how two 

situations of interest differ then Pearls/Bareinboim transportability analysis can, in principle, be used to 

recalibrate a CMF estimated in one situation so that it is applicable to a different situation. Although 

predictive models can be developed by identifying and exploiting observable regularities, even when the 

causes of these regularities are poorly understood, developing an explanation for a CMF requires a 

framework for stating hypotheses about how the CMF works and for deriving testable predictions from 

these hypotheses.  This chapter describes development of probabilistic causal model that provides a 

plausible, but not yet conclusive, explanation of how pedestrian hybrid beacons could achieve reported 

crash reductions. In Chapter 4, Pearl/Bareinboim transportability analysis will be applied to this model. 

3.1 PEDESTRIAN HYBRID BEACONS AND CRASH MODIFICATIONS 

A pedestrian hybrid beacon (PHB) is “a special type of hybrid beacon used to warn and control traffic at 

an unsignalized location to assist pedestrians in crossing a street or highway…” (FHWA, 2011).  There is 

reasonable statistical evidence indicating that installation of PHBs at uncontrolled crossings can reduce 

the frequency of pedestrian crashes. In an empirical Bayes before/after study of PHBs installed at 21 

sites in Tucson, AZ, Fitzpatrick and Park (2010) reported an estimated CMF for pedestrian crashes of 

0.308 (69.2% reduction), with an associated standard error of 0.155.  In another empirical Bayes 

before/after study using 27 PHB sites, some of which were also in Tucson, Zegeer et al. (2017) estimated 

a CMF of 0.244 (75.6% reduction) for pedestrian crashes, with an associated standard error 0.128. 

Many jurisdictions give right-of-way to pedestrians once they have entered a marked or unmarked 

crosswalk, as long as drivers are given sufficient distances to stop and as long as right-of-way is not 

controlled by a traffic signal. Studies using staged crossing attempts, however, have found locations 

where substantial numbers of approaching drivers failed to yield to pedestrians (e.g. Fitzpatrick et al., 

2014; Bertulis and Dulaski, 2014). Also, reviews of vehicle/pedestrian crash reports have shown that 

drivers’ “Failure to yield right-of-way” is frequently cited as a contributing factor (e.g. Shankar, 2003; 

Kimley-Horn, 2017). Finally, high rates of driver yielding have been observed at PHBs, in both 

before/after and in cross-sectional studies, and high rates of PHB use by pedestrians have also been 

reported (Fitzpatrick et al., 2014; Fitzpatrick et al., 2016). This leads to a first hypothesis about how PHBs 

reduce pedestrian crash frequency: at uncontrolled crossings crashes tend to occur when pedestrians 

attempt to cross but drivers fail to slow or stop, despite having adequate stopping distances. After the 

PHB is installed pedestrians tend to use it, drivers tend to stop as required, and crashes are prevented. If 

this is the case then it should be possible to generate CMFs similar to those reported in the literature by 

simulating vehicle/pedestrian encounters taking place according to the hypothesis. 

If the scenario proposed by the above hypothesis is typical then this should be seen when crashes are 

investigated in detail. In particular, there should be no evidence of pre-impact braking on the part of 

drivers and the collision speeds of vehicles should tend to mirror the running speeds on the roads where 

crashes occurred.  Regarding whether or not drivers brake when encountering pedestrians, a review of 
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the crash reports from an in-depth investigation of fatal pedestrian crashes in Adelaide, Australia 

showed pre-impact skid marks in approximately 24% of the cases, indicating that, even in very serious 

collisions, at least some drivers braked prior to collision (McLean et al., 1994). Regarding the relationship 

between impact speeds and running speeds, Figure 3. 1 plots estimated impact speed versus speed limit 

for vehicle/pedestrian crashes investigated in NHTSA’s Pedestrian Crash Data Study (PCDS) (Chidester 

and Isenberg, 2001).  The data shown in Figure 3. 1 are for pedestrians between ages 15 and 60 and for 

vehicles going straight (not turning). A fitted linear relationship between speed limit and impact speed 

gave an estimated slope of 0.67, indicating that the estimated impact speeds tended to be lower than 

speed limits, and raising the possibility that some drivers might have decelerated before collision. 

Finally, Randles et al. (2001) were able to estimate impact speeds from video recordings of 13 

vehicle/pedestrian crashes which occurred on a busy arterial in Helsinki. The speed limit on this road 

was 50 km/hour but in all cases the estimated impact speeds were less than the speed limit. Overall 

then, these findings suggest that we should be careful about equating drivers’ failure to yield to 

pedestrians, as seen in field studies, with a failure to brake when a collision appears imminent.   

  

Figure 3. 1 Impact speed (y-axis) versus speed limit (x-axis) for pedestrian crashes in the PCDS. 
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Turning to pedestrian behavior, in the field studies staged crossings were initiated only when drivers had 

adequate stopping distance. The video study of pedestrian crashes in Helsinki, however, found that the 

crashes tended to result when pedestrians entered the roadway more or less independently of vehicle 

position, and that the collisions involved freely-moving vehicles, as opposed to vehicles in platoons 

(Pasanen and Salmivaara, 1993).  This suggests that a reasonable simulation model should allow for 

“heedless” pedestrians as well as for evasive action on the part of drivers and should employ a traffic 

model that allows for a mixture of platooned and freely-moving vehicles. 
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3.2 SIMULATING VEHICLE/PEDESTRIAN ENCOUNTERS 

Collisions between vehicles and pedestrians can occur when a pedestrian is walking or running along the 

edge of a road, when a pedestrian is crossing at an intersection and is hit by a vehicle turning left or 

right, or when a vehicle leaves the roadway and strikes a pedestrian on the roadside (Stutts et al., 1996). 

Crashes also occur when a pedestrian attempts to cross a road and is struck by a vehicle travelling on a 

straight path and, arguably, this is the type of crash a PHB should prevent.  Figure 3. 2 shows a scene 

diagram for a crash investigated by the PCDS, where an adult pedestrian, running or jogging across a 

road in a crosswalk, was struck by an SUV. The relevant speed limit was 30 mph (48.4 km/hr) and the 

NHTSA investigators estimated the impact speed at about 19 mph (30.6 km/hr). This particular crash 

occurred at a signalized intersection, but it has kinematic similarities with the type of encounters a PHB 

is designed to address. 

 

Figure 3. 2 Post-crash scene diagram from PCDS case 72639p97. 

 

Figure 3. 3 Vehicle/pedestrian encounter at an uncontrolled crosswalk. 

Microsimulation models of vehicles/pedestrian encounters have been described by Archer (2005) and 

by Michaud (2018).  Figure 3. 3 depicts the type of event captured by our simulation model. A car, 

initially traveling at speed v1, is a distance d1 from the conflict zone when a pedestrian initiates crossing. 

After a reaction time r2 the pedestrian enters the road, traveling at speed v2.  The pedestrian then enters 
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the conflict zone after traveling a distance d2 from the pavement edge and exits the conflict zone after 

traveling a distance d2+w from the pavement edge. If the driver takes no action then the vehicle 

continues at its initial speed v1. If the driver attempts to slow or stop then, after a reaction time r1, the 

vehicle begins decelerating at constant rate a1. A crash occurs if the vehicle arrives at the conflict zone 

while the pedestrian is also in this zone. Otherwise, if the vehicle stops before reaching the conflict 

zone, or arrives either before the pedestrian enters or after the pedestrian exits the zone, a crash does 

not occur. If a crash occurs then vi denotes the vehicle’s speed at the point of impact. Formally: 

Time pedestrian arrives in the conflict zone: 𝑡𝑝𝑒𝑑1 = 𝑟2 +
𝑑2

𝑣2
 

Time pedestrian exits conflict zone: 𝑡𝑝𝑒𝑑2 = 𝑟2 +
𝑑2+𝑤

𝑣2
 

Vehicle’s arrival time: 

𝑡0 =

{
  
 

  
 

𝑑1
𝑣1
, 𝑖𝑓 𝑛𝑜 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑜𝑟 𝑑1 < 𝑟1𝑣1

𝑟1 +
𝑣1 − √𝑣1

2 − 2𝑎1(𝑑1 − 𝑟1𝑣1)

𝑎1
, 𝑖𝑓 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑟1𝑣1 ≤ 𝑑1 ≤ 𝑟1𝑣1 +

𝑣1
2

2𝑎1
 

∞, 𝑖𝑓 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑1 > 𝑟1𝑣1 +
𝑣1
2

2𝑎1

 (3. 1) 

A crash occurs if 𝑡𝑝𝑒𝑑1 < 𝑡0 < 𝑡𝑝𝑒𝑑2 . The impact speed is then given by 

𝑣𝑖 =

{
 
 

 
 

𝑣1, 𝑖𝑓 𝑛𝑜 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑜𝑟 𝑑1 < 𝑟1𝑣1

√𝑣1
2 − 2𝑎1(𝑑1 − 𝑟1𝑣1), 𝑖𝑓 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑟1𝑣1 ≤ 𝑑1 ≤ 𝑟1𝑣1 +

𝑣1
2

2𝑎1
 

0, 𝑖𝑓 𝑏𝑟𝑎𝑘𝑖𝑛𝑔 𝑎𝑛𝑑 𝑑1 > 𝑟1𝑣1 +
𝑣1
2

2𝑎1

 (3. 2) 

If values for the variables d1, v1, r1, a1, d2, v2, r2, w, and the driver’s braking decision are known, then 

whether or not a collision occurs, and the resulting impact speed, can be computed using equations 

(3.1) and (3.2).  

Equation (3.2) predicts the impact speed in a vehicle/pedestrian collision. To link the impact speed to 

pedestrian injury severity a logit model, developed in (Davis and Cheong, 2019) for pedestrians ages 15-

60, is used. Using the KABCN injury coding system, a Possible injury corresponds to injury codes C or N, a 

Probable injury corresponds to codes A or B, and a Fatal injury corresponds to code K. Using injury 

versus impact speed data from the PCDS, supplemented by an exogenous sample of pedestrian injury 

severities occurring in the Twin Cities of Minnesota, the authors fit several logit models, with different 

assumptions about measurement error and using both frequentist and Bayesian methods. The following 

model, representative of those fit by Davis and Cheong, was used in the simulations: 
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𝑃(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 ∨ 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑦|𝑣𝑖) =
exp(0.071𝑣𝑖 − 1.89)

1 + exp(0.071𝑣𝑖 − 1.89)
 

𝑃(𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑗𝑢𝑟𝑦|𝑣𝑖) = 1 −  𝑃(𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒 ∨ 𝑓𝑎𝑡𝑎𝑙 𝑖𝑛𝑗𝑢𝑟𝑦|𝑣𝑖) (3. 3) 

In Equation (3.3) vi is the impact speed in kilometers/hour.  

 

Figure 3. 4 Pedestrian crash simulation model represented as a directed acyclic graph. 

Figure 3. 4 represents the simulation model as a DAG.  The variable π1 represents the fraction of braking 

drivers while π2 represents the fraction of careful pedestrians. The model was coded to be run by 

WinBUGS (Lunn et al., 2013), a program for simulating conditional probability distributions using Markov 

Chain Monte Carlo. A standard Monte Carlo simulation would generate a random sample of vehicle 

arrivals (i.e. gaps); a subset of these would be gaps accepted by pedestrians and a subset of those would 

result in collisions. By using WinBUGS ability to condition on specific outcomes, such as a gap being 

accepted, it is possible to simulate only vehicle-pedestrian encounters, and so estimate the probability 

that a pedestrian is involved in a collision rather than the probability that a traffic gap results in one. The 

model was set up to simulate vehicle/pedestrian encounters on a hypothetical two-lane road, with both 

lanes being 12-feet (3.6 meters) wide. Originally, encounters in both lanes were simulated but since 

almost all simulated collisions occurred in the far lane interest was focused there. Traffic headways 

followed a shifted exponential distribution, with a minimum headway of 2 seconds and the flow of 

freely-moving (non-platooned) traffic was 200 vehicles/lane/hour. The nominal speed limit was 30 mph 
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(48.4 km/hr) and vehicle speeds were treated as normal random outcomes with a mean speed of 35 

mph (56.5 km/hr) and a standard deviation of 5 mph (8.1 km/hr). Driver reaction times were treated as 

lognormal random outcomes with a mean of 1.07 seconds and a standard deviation of 0.248 seconds, 

consistent with findings reported by Koppa et al. (1997) in tests of surprised emergency braking. Driver 

braking decelerations were treated as lognormal outcomes with a mean of 0.63g and a standard 

deviation of 0.08g, again consistent with statistics from Koppa et al. (1997). Pedestrian walking speeds 

were taken to be normal random outcomes with a mean of 5.0 feet/second (1.52 meters/second) and a 

standard deviation of 0.9 feet/second (0.27 meters/second), roughly consistent with the data for “non-

elderly” pedestrians reported by Fugger et al. (2001). The pedestrian reaction time r2 was set to zero, 

meaning that a driver’s reaction phase began at the moment the pedestrian entered the roadway. 

3.3 DEVELOPING EXPLANATIONS 

Table 3. 1 Simulated vehicle/pedestrian collision probability as a function of proportions of braking drivers and 

careful pedestrians 

 
Fraction of careful pedestrians (π2) 

0 .2 .4 .6 .8 1 

 

Fraction   

of braking 

drivers 

(π1) 

0 .0629 .05632 .04969 .04305 .03622 .02867 

.2 .05093 .0461 .04076 .03531 .02953 .02315 

.4 .03987 .03594 .0317 .02706 .02258 .01731 

.6 .02906 .02537 .02248 .01896 .01542 .01157 

.8 .01766 .01521 .01322 .01089 .008484 .005853 

1 .006392 .005428 .0042 .002722 .001486 .00008627 

As noted above, the initial hypothesis is that the staged pedestrian crossings used in field studies are 

representative of pedestrian behavior and that drivers’ failure to brake when encountering pedestrians 

is a main cause of collisions. PHBs then reduce the frequency of collisions by increasing the fraction of 

braking drivers. If this hypothesis is accurate it should be possible to simulate observed CMFs by 

changing the fraction of braking drivers.  In the simulation model a careful pedestrian was defined as 

being similar to the staged pedestrians in Brewer et al. (2015), accepting a gap only if the vehicle’s initial 

distance (d1) was greater than the AASHTO design stopping distance, 200 feet (61 meters) for a 30 mph 

(48.6 km/hr) speed limit. A careless pedestrian accepted the first gap greater than the following 

headway for platooned vehicles, 2.0 seconds. A braking driver was defined as one who, after reaction 

time r1, decelerated at rate a1, while a non-braking driver maintained a constant speed v1.  
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Again letting π1 denote the fraction of braking drivers and π2 denote the fraction of careful pedestrians, 

WinBUGS was used to simulate crash occurrences for different combinations of π1 and π2. For each 

combination, 500,000 accepted gaps were simulated and the number that resulted in crashes according 

to Equation (3.1) recorded. These simulated crash probabilities are displayed in Table 3. 1.  

Since a crash modification factor can be interpreted as the ratio of crash probabilities from two different 

situations (Davis, 2014) the collision probabilities listed in Table 3. 1 can be used to compute the 

simulated CMFs that would result from changes in driver or pedestrian behavior. For example, if before 

a PHB is installed, 100% of pedestrians are careful but no drivers brake, while after the PHB is installed 

all pedestrians are still careful but now 80% of drivers brake, the associated CMF would be 

𝐶𝑀𝐹 =
𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑓𝑡𝑒𝑟

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐵𝑒𝑓𝑜𝑟𝑒
=
. 005853

. 02867
= 0.204 (3. 4) 

If we accept simulated CMFs between 0.2 and 0.35 as being roughly consistent with the CMFs estimated 

in the before/after studies then the initial hypothesis, that pedestrians are careful and that PHBs achieve 

their effect by increasing the fraction of braking drivers, provides an explanation of the observed CMFs.  

Unfortunately, though, other changes in π1 and π2 also lead to simulated CMFs consistent with those 

from the before/after studies. For example, if 80% of drivers brake both before and after installation of 

a PHB, but the fraction of careful pedestrians changes from 0% to 100%, the simulated CMF would be 

𝐶𝑀𝐹 =
𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑓𝑡𝑒𝑟

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐵𝑒𝑓𝑜𝑟𝑒
=
. 005853

. 01766
= 0.331 (3. 5) 

which is again roughly consistent with the estimated CMFs. One can verify that other changes in driver 

or pedestrian behavior also lead to plausible CMFs. Clearly, the estimated CMFs do not by themselves 

provide enough information of identify a best explanation. 

A good case can be made that developing an explanation is done by abductive inference, which involves 

a cycle of hypothesis formation, prediction, and testing of predictions (Psillos, 2002; 2011) If, in the 

absence of a PHB, most drivers fail to brake for pedestrians then this should be reflected in collision 

impact speeds, and a viable explanation should also predict impact speeds similar to those which 

actually occur. Lacking detailed data on impact speeds it is still possible to use pedestrian injury severity 

as a proxy. That is, the initial (before PHB) values for π1 and π2 should reproduce observed distributions 

of pedestrian injury severity. Toward this end, 2764 police-reported collisions between adult (ages 15-

60) pedestrians and sedans, SUVs, pickups, or small vans were identified using Minnesota’s Crash 

Mapping tool (MNCMAT). These collisions all occurred in the Twin Cities metropolitan region during the 

years 2008-2015. The crash records included estimates of injury severity made by the investigating 

officers using the KABCN system, and a summary is shown in Table 3. 2.  In Table 3. 2 the ‘All’ column 

shows the injury distribution for all crashes in the sample, the “Straight-Ahead” column shows the 

distribution for only those crashes where the vehicles were moving forward in straight lines, and the 

“Straight-Ahead 30-35 mph Limit” column shows the Straight-Ahead distribution restricted to roads 

where the speed limit was 30 mph (48.4 km/hr) or 35 mph (56.5 km/hr). 
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Table 3. 2 Distribution of pedestrian injury severities: adults in MnDOT metro district 

 

Injury 

Category 

 

KABCN 

Range 

Vehicle Movement/Speed Limit 

All Straight-Ahead 
Straight-Ahead  

30-35 mph Limit 

Possible N-C 1560 (56.4%) 573 (49.1%) 481 (51.2%) 

Probable B-A 1141 (41.3%) 551 (47.2%) 445 (47.3%) 

Fatal K 63 (2.3%) 43 (3.7%) 14 (1.5%) 

Total  2764 1167 940 

Let n denote the number of collisions observed (the bottom row in Table 3. 2) and Y denote the number 

of those collisions resulting in Possible injuries. If collisions are independent of each other Y will be a 

binomial random variable with probability parameter 

𝑃(𝜋1, 𝜋2) = 𝑃(𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒|𝜋1, 𝜋2) = ∫𝑃(𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒|𝑣𝑖)𝑓(𝑣𝑖|𝜋1, 𝜋2)𝑑 𝑣𝑖   (3. 6) 

and the log likelihood function for the observed number of possible injuries is proportional to  

𝑦𝑙𝑛(𝑃(𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒|𝜋1, 𝜋2)) + (𝑛 − 𝑦)𝑙𝑛(1 − 𝑃(𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒|𝜋1, 𝜋2))  (3. 7) 

Using WinBUGS it is also possible to condition on the occurrence of a collision and so, via Equation (3.3), 

numerically evaluate the integral on the right-hand side of Equation (3.6). The hypothesis that no drivers 

brake and all pedestrians are careful leads to a probability of Possible injury of p(π1=0, π2=1)=0.09, i.e. 

only 9% of collisions result in Possible injury, which is inconsistent with the Possible injury rows of Table 

3. 2. Assuming that the observed injury distributions are due to mixes of braking drivers and careful 

pedestrians, one can search for combinations of values for π1 and π2 that best fit the observed injury 

distribution. Using the R2WinBUGS interface (Lunn et al., 2013) the simulation model was embedded in 

an R function that evaluated equation (3.7) for given values of π1 and π2. Using the Nelder-Mead 

algorithm implemented in the R function optim (Teetor, 2011) approximate maximum likelihood (ML) 

estimates for π1 and π2 were computed. When using the right-most column of Table 3. 2 (n=940 and 

y=481) ML estimates of π1=0.98 and π2=0.32 were found. The log-likelihood function was then evaluated 

on a grid of values surrounding the ML estimates, and Table 3. 3 shows the variation in log-likelihood 

when the fraction of braking drivers ranges between 0.95 and 1.0 while the fraction of careful 

pedestrians ranges from 0 to 1 in increments of 0.1. 

Table 3. 3 shows a ridge in the likelihood function corresponding to 98% of drivers braking and between 

0% and 30% of pedestrians being careful. Outside this range the associated likelihoods tend to be one or 

more orders of magnitude lower which implies, for non-informative priors on π1 and π2, that the 

corresponding posterior probabilities would also be at least an order of magnitude lower.  The best 

explanation then of the injury distribution,  given in the rightmost column of Table 3. 2, would be that it 
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results when almost all drivers brake and when the fraction of careful pedestrians ranges between 

roughly 0% and 30%. 

Table 3. 3 Variation in the log likelihood function near its maximum 

 
Fraction Careful Pedestrians (π2) 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Fraction 

Braking 

Drivers 

(π1) 

.95 -662 -663 -667 -668 -673 -678 -683 -696 -731 -796 -1086 

.96 -656 -656 -660 -660 -664 -667 -670 -680 -709 -765 -1065 

.97 -653 -653 -653 -654 -656 -658 -660 -667 -682 -731 -1061 

.98 -651 -651 -651 -651 -652 -652 -653 -654 -664 -691 -974 

.99 -655 -655 -654 -654 -661 -652 -653 -652 -652 -660 -862 

1.0 -665 -665 -666 -666 -666 -664 -669 -670 -667 -663 -652 

If almost all drivers brake in response to immanent collisions both before and after installation of a PHB 

then the crash modification effect would be due to changes in pedestrian behavior. Fixing the fraction of 

braking drivers at 0.98, Table 3. 4 shows how simulated collision probabilities change as the fraction of 

careful pedestrians ranges from 0 to 1.0, while Table 3. 5 shows simulated CMFs associated with 

different changes in the fraction of careful pedestrians. Again using simulated CMFs in the interval (0.2, 

0.35) as being roughly consistent with the estimates from the before/after studies, it appears that the 

hypothesis where 98% of drivers attempt to avoid collision by braking and the fraction of careful 

pedestrians changes from between 0% and 30% to between 80% and 90% can explain both the 

observed injury distribution and the observed CMFs. 

Table 3. 4 Variation in collision probabilities and injury severities with respect to change in pedestrian behavior 

when 98% drivers attempt to brake 

Fraction Careful Pedestrians Collision Probability Proportion Possible Injury 

0 .0077 0.52 

.1 .0069 0.52 

.2 .0064 0.515 

.3 .0058 0.51 

.4 .0051 0.50 

.5 .0043 0.49 

.6 .0035 0.485 

.7 .0028 0.47 

.8 .0021 0.43 

.9 .0014 0.37 

1.0 .00062 0.155 
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Table 3. 5 Simulated crash modification factors resulting from increases in percentage of careful pedestrians 

when 98% drivers attempt to brake 

 Fraction Careful Pedestrians After 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 

Fraction 

Careful 

Pedestrians 

Before 

0 1 .90 .83 .75 .66 .56 .45 .36 .27 .18 .08 

.1 - 1 .93 .84 .74 .62 .51 .41 .30 .20 .09 

.2 - - 1 .91 .80 .67 .55 .44 .33 .22 .10 

.3 - - - 1 .88 .74 .60 .48 .36 .24 .11 

.4 - - - - 1 .84 .69 .55 .41 .27 .12 

.5 - - - - - 1 .81 .65 .49 .33 .14 

.6 - - - - - - 1 .80 .60 .40 .18 

.7 - - - -  - - 1 .75 .50 .22 

.8 - - - - - - - - 1 .67 .295 

.9 - - - - - - - - - 1 .44 

1.0 - - - - - - - - - - 1 

3.4 CHAPTER SUMMARY 

In summary, in this chapter we developed an explanation of how pedestrian hybrid beacons achieve 

their reported crash modification effects. This was done by formulating a hypothesis about how PHBs 

might affect crashes, deriving predictions from that hypothesis, and then comparing the predictions to 

empirical observations. In this case a hypothesis that PHBs reduce crashes primarily by affecting 

pedestrian behavior explained both an observed distribution of injury severities and reported CMFs.  

Although not as yet conclusive, this explanation will be used in Chapter 4 to illustrate the 

transportability of a CMF to an environment having automated vehicles. 
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CHAPTER 4:  TRANSPORTABILITY OF A CRASH MODIFCATION 

FACTOR FOR PEDESTRIAN HYBRID BEACONS 

In this chapter the general results outlined in Chapter 2 are applied to the model developed in Chapter 3 

to assess the transportability of crash modification factors associated with pedestrian hybrid beacons. 

As in Chapter 2 the goal is to compare a transported CMF obtained via direct computation to one 

obtained using recalibration. In the original (S=0) situation all vehicles are assumed to be human-

operated while in the new (S=1) situation vehicles equipped with an autobraking system will also be 

present. The question is that, given the estimate of the PHB’s CMF in the original situation at a site, and 

the difference between the original situation (S=0) and new situation (S=1), is it possible to estimate 

CMF*, the PHB’s CMF in the new situation. 

In this example the reaction times and braking rates for human drivers are the same as described in 

Chapter 3, while the hypothetical autobraking systems have shorter reaction times (normally distributed 

with a mean of 0.5 second and a standard deviation of 0.1 second) and a harder braking rates (normally 

distributed with a mean of 0.8g and a standard deviation of 0.1g). For simplicity, both the human drivers 

and the autobraking systems are assumed to have a 100% yielding rates. Finally, it is assumed that, in 

the new situation, 50% of vehicles were equipped with the proposed autobraking system. 

Figure 4. 1 shows the selection diagram for the simulation example. As before, Y denotes the absence 

(Y=0) or presence (Y=1) of a crash while X=0 and X=1 denote the absence and presence of PHB 

installation, respectively. The outcome Y depends on eight inputs: “accept” which indicates whether or 

not the pedestrian accepts the gap, the driver reaction time r1 and driver braking rate a1, the vehicle 

initial speed v1 and initial distance d1, the pedestrian walking speed v2, the pedestrian reaction time r2, 

the distance from pavement edge to conflict zone d2 and the vehicle width w. Consistent with the 

working explanation developed in Chapter 3 in this example it is pedestrian behavior that is assumed to 

be affected by the PHB. S1 and S2 are the selection nodes with Si=0 and Si=1 (i=1,2) denoting the 

original and new situations, respectively. S1 and S2 pointing into driver braking rate and driver reaction 

time indicate that the distribution of a1 and r1 can differ between the original and new situations. 
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Figure 4. 1 Selection diagram for Scenario 1 case study. 

As noted in Chapter 3, when almost all simulated drivers attempt to brake in vehicle-pedestrian 

conflicts, but the fraction of careful pedestrians changes from between 0% and 30% to between 80% 

and 90%, both simulated injury distributions and simulated CMFs correspond to empirical observations.  

In this example, the assumption is that the fraction of braking drivers is 100% and that the PHB’s safety 

effect is to increase the fraction of careful pedestrians from 20% to 80%. 

Four Markov Chain Monte Carlo (MCMC) simulations were coded and conducted using the WinBUGS 

program: (1) vehicle-pedestrian conflicts in the base condition (S=0) and without PHB installation (X=0); 

(2) vehicle-pedestrian conflicts in the base condition (S=0) but with PHB installation (X=1); (3) vehicle-

pedestrian conflicts in new situation (S=1), without PHB installation (X=0); and (4) vehicle-pedestrian 

conflicts in new situation (S=1), with PHB installation (X=1). Key results from these four simulations  are 

summarized in Table 4. 1. 

To quantify the accuracy of the simulated crash probabilities, lower and upper bounds were computed 

as Posterior Mean±2×MCMC error (Lunn et al. 2013) for each posterior mean of collision probability. 

The CMFs for the PHB was then computed by 

𝐶𝑀𝐹 =
𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐴𝑓𝑡𝑒𝑟 𝑃𝐻𝐵

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐵𝑒𝑓𝑜𝑟𝑒 𝑃𝐻𝐵
 

for both situations, and their accuracies were quantified using first-order approximations to the 

associated variances. 
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Table 4. 1 Key results from vehicle-pedestrian encounter simulations 

 
Crash probability: 

Without PHB 

Crash probability: 

With PHB 
CMF for PHB 

Original 

situation 

(no AVs) 

Mean 0.005196 0.001341 0.258083 

MCMC error 2.52E-05 1.28E-05 0.002763 

Lower bound 0.005146 0.001315 0.252556 

Upper bound 0.005246 0.001367 0.263610 

New 

situation 

(50% AVs) 

Mean 0.002621 0.000673 0.256810 

MCMC error 1.82E-05 9.06E-06 0.003888 

Lower bound 0.002585 0.000655 0.249034 

Upper bound 0.002657 0.000691 0.264587 

In the original situation with no AVs the simulated probability of a vehicle-pedestrian collision without a 

PHB was 0.005196, and with a PHB this probability fell to 0.001341. In the new situation where 50% of 

the vehicles have autobraking, the probability of vehicle-pedestrian collision without the PHB was 

0.002621, and with a PHB this probability fell to 0.0006731. The CMF associated with the PHB was 

0.25808 in the no-AV situation, bounded by (0.252556, 0.263610) while that in new situation the CMF 

was 0.25681, bounded by (0.249034, 0.264587). That is, as might be expected, if PHBs work primarily by 

affecting pedestrian behavior and not driver behavior then the CMFs for PHBs should be approximately 

the same without and with automated vehicles. 

As noted earlier, the CMF for the original situation can be transported to the new situation using 

Equation (2.7), which in this case takes the form: 

CMF*=CMF

∑ ∑
P((a,r1)|Y=1,X=1,S=0)

P((a,r1)|S=0)
P((a,r1)|S=1)r1a

∑ ∑
P((a,r1)|Y=1,X=0,S=0)

P((a,r1)|S=0)
P((a,r1)|S=1)r1a

 

In words, knowledge of how a1 and r1 vary in crash events, with and without PHBs, can be leveraged 

with knowledge of how a1 and r1 vary in the old and new situations in order to recalibrate and existing 

CMF. To test this, WinBUGS was used to simulate the following conditional distributions:  

(1) P((a1, r1)|Y=1,X=1,S=0), the conditional posterior distribution of driver reaction time r1 and driver 

braking rate a1, given that a crash occurred, in the original situation and without PHB; 
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(2) P((a1, r1)|Y=1,X=0,S=0), the conditional posterior distribution of driver reaction time r1 and driver 

braking rate a1, given that a crash occurred, in the original situation but with PHB;  

(3) P((a1, r1)|S=0), the probability distribution of driver reaction time r1 and driver braking rate a1 in the 

original situation; and  

(4) P((a1, r1)|S=1), the probability distribution of driver reaction time r1 and driver braking rate a1 in the 

new situation.  

Descriptive statistics of driver reaction time and driver braking rate from those conditional simulations 

are displayed in Table 4. 2. 

Table 4. 2 Descriptive statistic of reaction time r1 and deceleration rate a1 from simulations 

Quantity of Interest 

Crash events in 

no AV situation 

with PHB 

Crash events in 

no AV situation 

without PHB 

All events 

original 

situation (No 

AVs) 

All events new 

situation (50% 

AVs) 

Driver reaction 

time r1 

(seconds) 

Mean 1.208 1.193 1.071 0.4995 

Sd 0.288 0.2746 0.2498 0.09986 

2.5%-ile 0.7544 0.7516 0.6643 0.3033 

Median 1.171 1.165 1.043 0.4987 

97.5%-ile 1.87 1.823 1.637 0.6964 

Driver braking 

rate a1 

(feet/second2) 

Mean 19.12 19.14 20.07 25.75 

Sd 2.32 2.367 2.547 3.238 

2.5%-ile 14.96 14.89 15.73 19.43 

Median 18.99 18.97 20.11 25.77 

97.5%-ile 24.0 24.21 25.7 32.1 

Figure 4. 2 and Figure 4. 3 display the probability distributions of driver reaction time and driver braking 

rate in crash events in the four relevant conditions. 
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Figure 4. 2 Probability distributions of driver reaction times: for crash events without AVs both before and after 

PHB installation and for all events without and with AVs. Before=No AVs, After=50% AVs. 



 

27 

 

 

Figure 4. 3 Probability distribution of driver braking rates: for crash events without AVs both before and after 

PHB installation and for all events without and with AVs. Before=No AVs, After=50% AVs. 

20,000 samples from each of the four MCMC simulations were used to compute the joint distributions 

of (a1, r1): P((a1, r1)|Y=1,X=1,S=0), P((a1, r1)|Y=1,X=0,S=0), P((a1, r1)|S=1), and P((a1, r1)|S=0). 

The CMF calibration factor, defined as 

∑ ∑
P((a,r1)|Y=1,X=1,S=0)

P((a,r1)|S=0)
P((a,r1)|S=1)r1a

∑ ∑
P((a,r1)|Y=1,X=0,S=0)

P((a,r1)|S=0)
P((a,r1)|S=1)r1a

 

requires “integrating” the products of probability distributions. This was done by approximating each 

two-dimensional joint distribution with a two-dimensional histogram and then summing over the 

histograms’ cells to get the numerator and denominator the calibration factor. The transported CMF* 

was finally computed as 

CMF*=CMF×Calibration Factor 
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Table 4. 3 shows the CMF calibrations obtained for a range of different grids used to construct the 

approximating histograms. 

Table 4. 3 CMF calibration factor and CMF* computation results 

n # cells Numerator Denominator Calibration Factor CMF* 

10 100 0.526 0.518 1.015444 0.261985 

15 225 0.52 0.512 1.015625 0.262031 

20 400 0.518 0.507 1.021696 0.263598 

25 625 0.513 0.503 1.019881 0.263129 

30 900 0.512 0.503 1.017893 0.262616 

35 1225 0.511 0.5 1.022 0.263676 

40 1600 0.507 0.499 1.016032 0.262136 

The transported CMF*s range from 0.261985 to 0.263676, and all fall in the interval (0.249034, 

0.264587), the bounds for CMF* computed via direct simulation. This again illustrates how a transport 

formula such as Equation (2.7) might offer a useful method for transporting existing CMFs to new 

conditions. 
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CHAPTER 5:  CONCLUSION 

We began by taking note of a continuing interest in applying, or “transferring,” a crash modification 

factor estimated for one situation to other, possibly different, situations. We also noted that this issue is 

likely to become more important as the mix of vehicle and driver capabilities changes with an increasing 

market penetration by automated vehicles. Current thinking about CMF transferability has focused on 

the possibility of developing CMfunctions, which describe how aggregate crash modification effects vary 

as aggregate measures of situational conditions vary. Here we have taken a different approach which 

focuses on, first, identifying sufficient conditions (aka warrants) for taking causal information 

determined in one situation and applying it to another situation, and second, deriving expressions for 

computing the transferred quantities. The analytic tools we used were Pearl and Bareinboim’s 

“transportability” analyses, which we first applied to two simplified, but plausible, scenarios. For each of 

these scenarios we derived a re-calibration formula by which an existing CMF could be adjusted to 

reflect new conditions. We then developed a probabilistic causal model of how pedestrian hybrid 

beacons might achieve their reported crash modification effects, and finally used transportability 

analysis to assess how these CMFs might change when vehicles with a hypothetical autobraking system 

are present.  

This report describes an exploratory analysis, leaving practical applications as topics for future work, but 

some comments regarding practical application are in order. The method described here has two main 

components. The first is a graphical model describing the dependencies among a set of relevant 

variables. Compared to generalized linear models, graphical models (aka Bayesian networks, or 

structural models) have not been used much in road safety, although applications in areas such as 

epidemiology, image processing, and forensic science are common (Pourret et al., 2008). One future 

research need then is for development and validation of graphical models for different crash scenarios. 

Historically, such research has been handicapped by a lack of detailed data on what actually happens 

during road crashes, but this situation might be improving with the availability of data from naturalistic 

driving studies and from in-vehicle event data recorders. 

The second main component is probability distributions for model variables consistent with the 

graphical model. For our purposes, a full specification of the model, which includes all relevant 

probability distributions, might not be necessary. What is needed is the qualitative description, via a 

graph, in sufficient detail that we can identify a critical set of variables that d-separate the outcome 

from the situational differences. Actually, applying a formula such as equation (2.7) then requires 

distributions for these critical variables, including their distributions in populations of crash events. As 

noted above, data on what actually happens in crashes have historically been difficult to come by, but a 

promising possibility is to use information from the event data recorders typically found in airbag 

control modules to construct a national database that could then support transportability analyses 

(Chidester et al., 1999; Bonneson and Ivan, 2013). 
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APPENDIX A 

COMPUTATIONS FOR THE SCENARIO 1 EXAMPLE 

 



 

A-1 

First, using the values in Table 2. 1 it is straightforward to verify that the original and new CMFs are 

𝐶𝑀𝐹 =
𝑃(𝑌 = 1|𝑆 = 0, 𝑋 = 1)

𝑃(𝑌 = 1|𝑆 = 0, 𝑋 = 0)
=
𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑆 = 0, 𝑋 = 1)

𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑆 = 0, 𝑋 = 0)
=
. 2 + (. 8)(.5)

. 5 + (. 5)(.5)
= 0.8 

𝐶𝑀𝐹∗ =
. 2 + (. 8)(.2)

. 5 + (. 5)(.2)
= 0.6 

To apply Equation (2.4) we need the v-specific causal effects from the original (no- treatment) situation. 

𝑃(𝑌 = 1|𝑋 = 1, 𝑉 = 0) 

= 𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑋 = 1, 𝑉 = 0) 

= 𝑃(𝑈 = 1|𝑋 = 1, 𝑉 = 0) 

= 𝑃(𝑈 = 1|𝑋 = 1) = 0.2 

𝑃(𝑌 = 1|𝑋 = 1, 𝑉 = 1) 

= 𝑃(𝑈 = 1 ∨ (𝑈 = 0 ∧ 𝑉 = 1)|𝑋 = 1, 𝑉 = 1) 

= 0.2 + (. 8)(1) = 1.0 

The numerator in Equation (2.4) is then 

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1), 𝑆 = 1) = (. 2)(. 8) + (1.0)(. 2) = 0.36 

Similarly, the denominator is 

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0), 𝑆 = 1) = (. 5)(. 8) + (1.0)(. 2) = 0.6 

and 𝐶𝑀𝐹∗ =
0.36

0.6
= 0.6, as found earlier. 

To apply Equation (2.7) we need the distributions of V in crashes occurring in the original situation, with 

and without the intervention. For example 

𝑃(𝑉 = 0|𝑌 = 1, 𝑋 = 1, 𝑆 = 0) =
𝑃(𝑌 = 1 ∧ 𝑉 = 0|𝑋 = 1, 𝑆 = 0)

𝑃(𝑌 = 1|𝑋 = 1, 𝑆 = 0)
 

𝑃(𝑌 = 1 ∧ 𝑉 = 0|𝑋 = 1, 𝑆 = 0) 

= 𝑃(𝑈 = 1 ∧ 𝑉 = 0|𝑋 = 1, 𝑆 = 0) 

= 𝑃(𝑈 = 1|𝑋 = 1)𝑃(𝑉 = 0|𝑆 = 0) = (. 2)(. 5) = 0.1 

𝑃(𝑌 = 1|𝑋 = 1, 𝑆 = 0) 

= 𝑃(𝑈 = 1|𝑋 = 1) + 𝑃(𝑈 = 0|𝑋 = 1)𝑃(𝑉 = 1|𝑆 = 0) 

= .2 + (. 8)(. 5) 

= 0.6𝑃(𝑉 = 0|𝑌 = 1, 𝑋 = 1, 𝑋 = 0) =
. 1

. 6
≈ 0.167 

 

Ultimately, we get 



 

A-2 

𝑃(𝑉 = 0|𝑌 = 1, 𝑋 = 1, 𝑆 = 0) = 0.167 

𝑃(𝑉 = 1|𝑌 = 1, 𝑋 = 1, 𝑆 = 0) = 0.833 

𝑃(𝑉 = 0|𝑌 = 1, 𝑋 = 0, 𝑆 = 0) = 0.333 

𝑃(𝑉 = 1|𝑌 = 1, 𝑋 = 0, 𝑆 = 0) = 0.667 

Substituting these values into Equation (2.7) 

∑
𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 1, 𝑆 = 0)𝑃(𝑉 = 𝑣|𝑆 = 1)

𝑃(𝑉 = 𝑣|, 𝑆 = 0)
𝑣

=
(. 167)(.8)

. 5
+
(. 883)(.2)

. 5
= 0.6 

∑
𝑃(𝑉 = 𝑣|𝑌 = 1, 𝑋 = 0, 𝑆 = 0)𝑃(𝑉 = 𝑣|𝑆 = 1)

𝑃(𝑉 = 𝑣|𝑆 = 0)
𝑣

=
(. 333)(.8)

. 5
+
(. 667)(.2)

. 5
= 0.8 

𝐶𝑀𝐹∗ = (. 8) (
. 6

. 8
) = 0.6 

 

 



 

 

APPENDIX B 

WINBUGS CODE FOR SIMULATION MODEL 
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model 

# simulation of conflicts and crashes using random acceptance 

# gap acceptance IVs=log gap, ML estimates from Minitab 

# Fambro et al stats of braking and reaction times 

# analytic model for clearance time 

#  Cowan M3 gaps, linear alpha-q relationship 

# revised crash criterion 

# opposing LT sight distance model 

 

{ 

#conflict point opposite leftmost receiving lane 

x2hit <- 1.5*Lwmin 

 

# arrival of opposing LT 

qolt.sim<- Qpolt/3600 

pblock <- 1-exp(-qolt.sim*red) 

block ~ dbern(pblock) 

 

#available sight distance model from Hussain and Easa 2016 

Vwo.tau <- 1/(Vwo.sig*Vwo.sig) 

Yi.tau <- 1/(Yi.sig*Yi.sig) 

Yp.tau <- 1/(Yp.sig*Yp.sig) 

Xe.tau <- 1/(Xe.sig*Xe.sig) 

XL.tau <- 1/(XL.sig*XL.sig) 

XLi.tau <- 1/(XLi.sig*XLi.sig) 
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vwo ~ dnorm(Vwo,Vwo.tau) 

yi ~ dnorm(Yi,Yi.tau) 

yp ~ dnorm(Yp,Yp.tau) 

xe ~ dnorm(Xe,Xe.tau) 

xl ~ dnorm(XL,XL.tau) 

xli ~ dnorm(XLi,XLi.tau) 

SDa.num <- (((2*Dc+nlane.minor*Lwmin)/2)+yp+yi)*(1.5*Lwmaj-vwo-xli) 

SDa.denom <- xli+xe-Lwmaj+xl+vwo-xo 

SDa <- (SDa.num/SDa.denom)+yp-Mmin-.5*Lwmin 

 

# Through vehicle arrival 

v.sim.mu <- v.bar*(88/60) 

v.sim.tau <- 1/(v.sig*v.sig*(88/60)*(88/60))  

v.sim ~ dnorm(v.sim.mu,v.sim.tau)I(1,) 

v.sim.mph <- v.sim*(60/88) 

qp <- Qp/3600 

alpha <- max(0,1-tm*qp) 

lambda <- alpha*qp/(1-tm*qp) 

u ~ dunif(0,1) 

gap0.sim <- tm-log((1-u)/alpha)/lambda 

littleu <- step((1-alpha)-u) 

gap.sim <-(1- littleu)*gap0.sim + (littleu)*tm 

x.sim <- gap.sim*v.sim 

# tc.tau <- 1/(tc.sigma*tc.sigma) 

# tc.mu <- tc.beta0+tc.beta1*log(gap.sim)  
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# tc.sim ~ dlnorm(tc.mu,tc.tau) 

ac ~ dunif(ac.lo,ac.hi) 

tc.sim  <- sqrt(2*xc/ac) 

linmod.sim <- beta0 + beta1*log(gap.sim) 

logit(p.sim) <- linmod.sim 

# px.sim <- p.sim*step(gap.sim-gap.min) 

heedless <- block*step(x.sim-SDa) 

px.sim <- heedless*(1-littleu) + (1-heedless)*p.sim*step(gap.sim-gap.min) 

# accept.sim <- step(p.sim-u.sim)*step(gap.sim-gap.min) 

accept.sim ~ dbern(px.sim) 

 

 

# collision simulation 

 g <- 32.2 

 # tp.sim ~dunif(0.5,1.5) 

 # f.sim ~ dunif(.5,.9) 

  

     tp.sigma2 <- log((pow(tp.sd,2)/pow(tp.bar,2))+1) 

     tp.mu <- log(tp.bar)-0.5*tp.sigma2 

     tp.tau <-1/tp.sigma2 

     f.sigma2 <- log((pow(f.sd,2)/pow(f.bar,2))+1) 

     f.mu <- log(f.bar)-0.5*f.sigma2 

     f.tau <- 1/f.sigma2 

 

     tp.sim ~dlnorm(tp.mu,tp.tau) 
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     f.sim ~dlnorm(f.mu,f.tau) 

 a.sim <- f.sim*g 

  v.sim.fps <- v.sim 

       x0.sim <- x.sim+x2hit 

       xbrake.sim <- pow(v.sim.fps,2)/(2*a.sim) 

       xprt.sim <- v.sim.fps*tp.sim 

       xstop.sim <- xbrake.sim + xprt.sim 

        stop.sim <- step(x0.sim-xstop.sim) 

        fullhit.sim <- step(xprt.sim-x0.sim) 

        tc1.sim <- x0.sim/v.sim.fps 

   vbrake2.sim <- max(v.sim.fps*v.sim.fps-2*a.sim*(x0.sim-xprt.sim),0) 

        tc2.sim <-tp.sim+(v.sim.fps-sqrt(vbrake2.sim))/a.sim  

       

        tc0.sim <- stop.sim*1000+(1-stop.sim)*fullhit.sim*tc1.sim+(1-stop.sim)*(1-fullhit.sim)*tc2.sim 

# crash condition tc-crash.buffter < tc0 < tc 

 close1.sim <- step(tc0.sim-(tc.sim-crash.buffer/2))*step(tc.sim+crash.buffer/2-tc0.sim) 

 # hit.sim <- accept.sim*close1.sim 

 phit.sim <- close1.sim*accept.sim 

 hit.sim ~ dbern(phit.sim) 

 v.impact <- hit.sim*((fullhit.sim*v.sim)+(1-fullhit.sim)*(sqrt(vbrake2.sim))) 

 

} 

     

Data    list(crash.buffer=.5,gap.min=2.5) 

list(Vwo=6.7,Vwo.sig=0.1,Yi=7.7,Yi.sig=0.16,Yp=28,Yp.sig=13,Xe=1.4,Xe.sig=0.03,XL=0.2,XL.sig=1.2,XLi=2.

2,XLi.sig=0.8,Lwmaj=12,Dc=8,Lwmin=12,Mmin=10,nlane.minor=5,xo=-10,red=30) 
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list(xc=64.8,ac.lo=6.5,ac.hi=13) 

list(Qp=1000,tm=2.0,Qpolt=50) 

list(beta0=-8.2736,beta1=4.8475) 

list(tp.bar=0.6,tp.sd=0.3,f.bar=0.75,f.sd=0.1) 

list(v.bar=35.6,v.sig=9.0) 

list(accept.sim=1) 

list(hit.sim=1) 

list(tc.beta0=.4569, tc.beta1=.31524,tc.sigma=.2799) 

Inits list(u =.5,v.sim=50,block=1) 
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